M-math 2nd year Supplementary Back Paper Exam Subject : Analysis III

Time: 2.30 hours

Max.Marks 45.

1. Show that

$$\int_{C} ydx + zdy + xdz = \pi a^2 \sqrt{3}$$

where C is the curve of intersection of the sphere $x^2 + y^2 + z^2 = a^2$ and the plane x + y + z = 0. (10)

- 2. Let $T = [0,1] \times [0,1]$ with coordinates (u,v) and $\vec{r}: T \to S \subset \mathbb{R}^3$ be a smooth parametrisation of a surface S. Let C^* be a smooth curve in T and let $C := \vec{r}(C^*)$ be a smooth curve lying on S. Show that at each point of C, the vector cross product $\frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v}$ is normal to C. (10)
- 3. Let $V_n(a) := \int_{S_n(a)} \cdots \int_{S_n(a)} dx_1 \cdots dx_n$ where $S_n(a) := \{(x_1, \cdots x_n) : x_1^2 + \cdots x_n^2 \le a^2\}$ and the integral is an n-dimensional multiple integral. Show that $V_n(1) = C_n V_{n-2}(1), n \ge 3$ where C_n is some constant depending only on n. (10)
- 4. Compute the work done by the force field f(x,y) := (y+3x,2y-x) in moving a particle once around the ellipse $4x^2 + y^2 = 4$. (10)
- 5. Compute the volume of the solid enclosed by the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

(10)